ESM®'2009
The 2009 European Simulation and Modelling Conference
Modelling and Simulation ‘2009

October 26-28, 2009
Leicester, United Kingdom
MODELLING AND SIMULATION 2009

THE EUROPEAN SIMULATION

AND

MODELLING CONFERENCE

2009

ESM® '2009

EDITED BY

Marwan Al-Akaidi

OCTOBER 26-28, 2009

LEICESTER, UNITED KINGDOM

A Publication of EUROSIIS-ETI
The European Simulation and Modelling Conference 2009

LEICESTER, UNITED KINGDOM

OCTOBER 26-28, 2009

Organised by
ETI- The European Technology Institute

Sponsored by
EUROSIS, The European Simulation Society

Co-Sponsored by

Ghent University

De Montfort University

and

IEEE UKRI-SPC

Hosted by

Holiday Inn
Leicester, United Kingdom
EXECUTIVE EDITOR

PHILIPPE GERIL
(BELGIUM)

EDITORS

General Conference Chair
Marwan Al-Akaidi, de Montfort University, Leicester, United Kingdom

Past Conference Chair
Cyrille Bertelle, Universite du Havre, Le Havre, France

Journal Publication Chair
Yan Luo, NIST, Gathersburg, USA

Local Committee Chairs
Phil Moore, de Montfort University, Leicester, United Kingdom
B. Jones, de Montfort University, Leicester, United Kingdom

INTERNATIONAL PROGRAMME COMMITTEE

Methodology and Tools
Thomas Hanne, Fraunhofer -ITWM, Kaiserslautern, Germany
Bjorn Johansson, Chalmers Univ. of Technology, Gothenburg, Sweden
Abder Koukam, Univ. de Technologie de Belfort, Belfort, France
Moreno Marzolla, Universita di Venezia, Mestre, Italy
Roberto Revetria, University of Genova, Genoa, Italy
Bert van Beek, Eindhoven University of Technology, Eindhoven, The Netherlands
Abdou Zakani, LITA, Universite de Metz, France

Random Simulation and Applications
Chair: Azedine Grine, Imam Mohammed University, Riyadh, Saudi Arabia
Samy Mziou, Imam Mohammed University, Riyadh, Saudi Arabia
Anis Sadek Benghorbal, Imam Mohammed University, Riyadh, Saudi Arabia

Simulation and Artificial Intelligence
Mohktar Beldjehem, St.Anne's University, Halifax, Canada
Helder Coelho, Fac Ciencias, Lisbon, Portugal
Paulo Cortez, University of Minho, Guimareas, Portugal
Charbel Fares, ESIEE, Noisy-le-Grand, France
Adam Galuszka, Silesian Technical University, Gliwice, Poland
Martin Hruby, Brno University of Technology, Brno, Czech Republic
Vladimir Janousek, Brno University of Technology, Brno, Czech Republic
Esko Juuso, University of Oulu, Finland
Jose Neves, Universidade do Minho, Braga, Portugal
Wolfgang Kreutzer, Univ. of Canterbury, Christchurch, New Zealand
Damien Olivier, Universite du Havre, France
Leon Rothkrantz, TU Delft, The Netherlands
Franciszek Seredyński, Polish Acad.of Science, Warsaw, Poland
Jim Torrøsen, University of Oslo, Norway
Frantisek Zbořil, Brno University of Technology, Brno, Czech Republic
Morched Zeghal, Nat. Res.Council Canada, Ottawa, Canada
INTERNATIONAL PROGRAMME COMMITTEE

High Performance Large Scale and Hybrid Computing
Track Chair: Beniamino di Martino, Second University of Naples, Italy
Jan Broeckhove, University of Antwerp, Antwerp, Belgium
Giancarlo Fortino, Universita della Calabria, Rende, Italy
Jari Porras, Lappeenranta University of Technology, Finland
Simon See, Sun Microsystems Inc. Singapore
Pierre Siron, ONERA, Toulouse, France
Behrouz Zarei, Sharif University of Technology, Tehran, Iran

Parallel Processing with Games Machines
Sofie Van Volsen, Ghent University, Ghent, Belgium

Simulation in Education and Graphics Visualization
Magy Seif El-Nasr, Penn State University, Evanston, USA
Jan Lemeire, VUB, Brussels, Belgium
Qingping Lin, Nanyang Technological University, Singapore
Marco Rocchetti, University of Bologna, Italy

Simulation in Environment, Ecology, Biology and Medicine
Eduardo Ayesa, CEIT, San Sebastian, Spain
Cyrille Bertelle, LIH, Le Havre, France
Vahid Nassehi, Loughborough University, Loughborough, United Kingdom
Laurent Peronch, INRA, St Genes Champanelle, France
Cezary Orlowski, Technical University Gdansk, Poland
Tarik Ozkul, American University of Sharjah, UAE
Pierrick Tranouez, Labo Info du Havre, France

Analytical and Numerical Modelling Techniques
Ana M. Camacho, UNED, Madrid, Spain
Tom Dhaene, Ghent University, Ghent, Belgium
Clemens Heitzinger, University of Vienna, Vienna, Austria
Panaioits Katsaros, Aristotle University, Thessaloniki, Greece
Eva M. Rubio, UNED, Madrid, Spain

Web Based Simulation
Dimosthenis Anagnostopoulos, Harokopion University of Athens, Greece
Manuel Alfonseca, Universidad Autonoma de Madrid, Spain
Ammar Al-Khani, VTT Processes, Espoo, Finland
Jose Barata, New University of Lisbon, Portugal
Lenin Lerma, UPV, Valencia, Spain
Yan Luo, NIST, Gaithersburg, USA
Jose Machado, University of Minho, Braga, Portugal
Maria Nikolaidou, University of Athens, Greece
Francesco Quaglia, University of Rome I, Italy
Krzysztof Pawlikowski, University of Canterbury, Christchurch, New Zealand
Vaclav Snasel, VSB Technical University of Ostrava, Czech Republic

Agent Based Simulation
Eric Gouarderes, UPPA, Pau, France
Frederic Guinand, Universite du Havre, France
Zisheng Huang, Vrije Universiteit Amsterdam, The Netherlands
Jean-Luc Koning, INPG-ESISAR-LEIBNIZ, Grenoble, France
Peter Lawrence, Australian Catholic University, Melbourne, Australia
Ioan Alfred Letia, TU Cluj Napoca, Romania
Paulo Novais, Universidade do Minho, Braga, Portugal
Jan-Torsten Milde, FH Fulda, Germany
Isabel Praca, Ist. Superior do Porto, Portugal
Marco Remondino, University of Turin, Italy
Agosthino Rosa, Technical University Lisbon, Portugal
INTERNATIONAL PROGRAMME COMMITTEE

Simulation with Petri Nets
Pascal Berruet, Universite Bretagne Sud, Lorient, France
Carmen Bobeau, Ghent University, Belgium
Mauro Iacono, University of Naples II, Italy
Juan de Lara, Univ. Autonoma de Madrid, Spain
Hammid Demmou, LAAS CNRS, Toulouse, France
Olivier Grunder, UTBM, Belfort, France
Guenther Hommel, TU Berlin, Germany
Stefano Marrone, Seconda Universita degli Studi di Napoli, Naples, Italy
Alexandre Nketsa, LAAS-CNRS, Toulouse, France
Mario Paludetto, LAAS-CNRS, Toulouse, France
Jean-Claude Pascal, LAAS-CNRS, Toulouse, France
Ivo Vondrak, Technical University of Ostrava, Czech Republic

Bond Graphs Simulation
Rui Esteves Araujo, DEEC-FEUP, University of Porto, Portugal
Jesus Felez, Univ. Politecnica de Madrid, Spain
Aziz Naamane, DIAM-IUSPIM, Marseille, France
Manuel Rodrigues Quintas, FEUP, University of Porto, Portugal
Andre Tavernier, BioSim, Brussels, Belgium

DEVS
Fabrice Bernardi, University of Corsica, Corte, France
Dirk Brade, FOI, Stockholm, Sweden
Adriano Carvalho, FEUP, University of Porto, Portugal
Alexandre Muzy, Universite de Corse, Corte, France
Fernando Tricas, Universidad de Zaragoza, Spain

Fluid Flow Simulation
Diganta Bhusan Das, Loughborough University, United Kingdom
H.A.Nour Eldin, University of Wuppertal, Germany
Markus Fiedler, Blekinge Institute of Technology, Sweden
Hai Xiang Lin, TU Delft, The Netherlands
Preface

Dear participants

It is my pleasure to welcome you to the 2009 European Simulation and Modelling Conference (ESM® 2009), the international European conference on the state of the art of modelling and simulation, which this year is being held at the Holiday Inn, in the city of Leicester, United Kingdom in cooperation with the de Montfort University.

Even though we live in harsh economic times with declining numbers in participation, this year’s event still has managed to attract some 65 high quality papers from 21 different countries spanning 4 continents, out of 86 papers submitted.

Further to the selected scientific presentations, EUROSIS and I are grateful to Professor Adrian Hopgood of de Montfort University for giving this year’s keynote speech entitled: “Hybrid Systems, the Future of Artificial Intelligence” and to our invited speakers; Ken Kahn from Oxford University with his talk on “The Modelling4All Project: A web-based modelling tool embedded in Web 2.0” and Simon Scarie from Warwick University with his talk on “Putting a Heart into a Box: GPGPU simulation of a Cardiac Model on the XBox 360”.

I wish to thank all those, who have contributed their time and effort in organizing this meeting. This goes out to the International Program Committee members who took care of the reviewing process. They have done a great job in arranging a strong technical program, which covers a variety of speciality areas covering present day methodological simulation research.

Recognition for this conference must go also to Philippe Geril, the EUROSIS coordinator, who was the main force responsible for the organisation of the meeting.

Furthermore, I would like to thank the Creative Technology Studios at de Montfort University, for accepting to have the conference participants visit the BBC research studios at the aforementioned site.

Finally, I would like to wish you a pleasant stay in Leicester and a successful conference meeting

Professor Dr Marwan Al-Akaidi
ESM’2009 General Conference Chair
EUROSIS – M. East Chair
School of Engineering & Technology,
De Montfort University,
Leicester, LE1 9BH, UK.
Email: mma@dmu.ac.uk
CONTENTS

Preface ... IX
Scientific Programme ... 1
Author Listing ... 399

MODELLING ENVIRONMENTS

OPTFERM-A Computational Platform for the Optimization of Fermentation Processes
Orlando Rocha, Paulo Maia, Isabel Rocha and Miguel Rocha .. 5

MLPS: A Method for Modeling Livestock Production Systems
Laurent Pérochon .. 10

A Python Validation of the Multilayer DEVS Theory: Case of a Catchment Basin
Emilie Broutin, Paul Bisgambiglia and Jean-François Santucci 15

MODULAR SIMULATION AND DESIGN

A Software Component which generates Regular Numbers from refined Descriptive Sampling
Megdouda Ourbih-Tari, Abdelouhab Aloui and Amine Alioui .. 23

Composition of product-form Generalized Stochastic Petri Nets: a modular approach
Simonetta Balsamo and Andrea Marin ... 26

Enhancing Discrete Simulation Executive with Simple Continuous Simulation and Animation Support
Norbert Adamko .. 35

MODEL VERIFICATION, VALIDATION AND EVALUATION

A Formal Definition of Simulation Validity
Vincent Albert and Alexandre Nketsa ... 43

Concepts for Model Verification and Validation during Simulation Runtime
Wilhelm Dangelmaier, Robin Delius, Christoph Laroque and Matthias Fischer 49

SRN Model for Performance Evaluation of TCP Sessions Sharing Bottleneck Links in WAN
Osama S. Younes, Wail S. Elkilani and Nigel Thomas .. 54
CONTENTS

A Simulation Model for Evaluating Distributed Systems Dependability
Ciprian Dobre, Florin Pop and Valentin Cristea................................. 62

Monte Carlo and Latin Hypercube Methods through a Case Study
Samy Mziou .. 70

SIMULATION TOOLS

Evaluation of Four Artificial Lighting Simulation Tools with Virtual Building
Reference
Shariful H. Shikder, Andrew D. Price and Monjur M. Moursheed 77

Modeling and Simulation of CO₂ Absorber Column in MODELICA
Masoud Najafi and Zakia Benjelloun-Dabaghii..................................... 83

Simulation of PDES in MODELICA, Application to Absorber Column
Masoud Najafi and Zakia Benjelloun-Dabaghii..................................... 88

Experiences of using the PEPA Performance Modelling Tools with a
Non-Repudiation Protocol
Yishi Zhao and Nigel Thomas... 95

The Co-Space Project – A Framework and Set of Tools for the Building and
Visualization of Sensor, Telemetry & Web-Integrated Simulations within
Wonderland Worlds
Chong-Wee Simon See, Chee-Kian Melvin Koh, Che-Wing Cheung,
Douglas Finnigan and Joon Jew Liow ... 101

LOGISTICS AND WAREHOUSING TOOLS

Dynamic Routing Strategies for Automated Container Terminals
Su Min Jeon, Mark B. Duinkerken and Gabriel Lodewijks........................ 109

Combining Scripting and Commercial Simulation Software to simulate In-
Plant Logistics
Tim Govaert, Sven Neirynck, Sofie Van Volsem and
Hendrik Van Landeghem .. 114

Conducting the Simulation of Warehousing Systems
Christian-Andreas Schumann, Noemi Nikoghosyan and Andreas Rutsch 119

A Four Hundred Variable Nonlinear Transportation Problem
William Conley ... 124
MANUFACTURING MANAGEMENT TOOLS

Optimum Allocation of Inspection Effort in Multistage Manufacturing Processes
Ali G. Shetwan and Valentin I. Vitanov .. 131

Improving the Job-Shop Workload Control through Order Acceptance and Due Date Negotiation
Maria do Rosário Alves Moreira .. 141

Optimization of Car Repair Processes by Scattered Context Grammars Application
Šárka Květoňová and Dušan Kolář .. 146

System engineering approach for safety management of complex systems
R. Guillerm, H. Demmou and N. Sadou .. 150

ENGINEERING SIMULATION

Reduced Simulation’s Model of a Wheel Loader by using the Bond Graph technique to use in Training Simulators
G. Romero, J. Félez, J. Maroto and J. D. Sanz .. 161

On Line Fault Diagnosis of a Diesel Engine
Chady Nohra, Hassan Noura and Rafic Younes .. 168

ENERGY SIMULATION

Utility Computing Simulation
Benjamin Heckmann, Ingo Stengel, Günter Turetschek and Andy Phippen..... 175

The Simulation of the Energetic Characteristics of Hydropower Plants and Wind Farms applied to the Cost Analysis of Electricity Generation in the Power System
Eugeniusz M. Sroczan .. 181

Parallelism of Control Process of Electric Energy Consumption in a Distributed Power Grid System
Dariusz Bober and Henryk Kapron .. 184

HEALTH SERVICE MANAGEMENT

Human resources integration in complex systems modeling: application to the health care systems
Michelle Chabrol, Michel Gourgand and Sophie Rodier .. 189
CONTENTS

Methodological approach and decision-making aid tool for the hospital systems: Application to an emergency department
Julie Chauvet, Michel Gourgand and Sophie Rodier .. 197

Interoperability and Healthcare
Miguel Miranda, Júlio Duarte, António Abelha, José Machado and José Neves ... 205

Modelling and Simulation of the Stomatology Service for the Rmuho
Khaled Belkadi and Alain Tanguy ... 213

DATA SIMULATION AND STORAGE

Modelling of VoIP Overlay Routing using Graph Transformation
Ajab Khan and Muhammad Muzammal .. 221

Microarray data and image simulation
Ignazio Infantino, Carmelo Lodato and Salvatore Lopes .. 226

Data Placement and Migration Strategies for Virtualised Data Storage Systems

Datapath Architecture Simulation*
Venkatesh Kannan, Marc Voorhoeve and Lou Somers 238

State Estimation of a Nonlinear CSTR Using a Novel Asynchronous Data Fusion Based on Adaptive Extended Kalman Filter
Vahid Fathabadi, Mehdi Shahbazian, Karim Salahshoor and Lotfollah Jargani ... 243

DECISION SUPPORT SYSTEMS

Design of a Decision Making Support within Agent-Based Simulations reflecting Railway Traffic
Antonin Kavička and Michael Bažant .. 251

Development of Decision Support and Simulation System BPsim.DSS: Integration of Simulation, expert Situational and Multi-Agent Modeling
Konstantin A. Aksyonov, Eugene A. Bykov, Olga P. Aksyonova, Wang Kai, Alex ey V. Popov, Elena F. Smoliy, Ekaterina M. Sufrygina, Irina A. Spitsina and Alexey A. Sheklein ... 256

Decision Support System for a regional spreading of A/H1N1 Influenza Virus
David Hill, Romain Barraud, Benoit Crozat, Luc Touraille, Alexandre Muzy and Frederic Leccia ... 261
CONTENTS

Memory Assistant in Everyday Living
Ángelo Costa, Paulo Novais, Ricardo Costa and José Neves ... 269

SIMULATION AND AI

An Alternative Measurement of the Entropy Evolution of a Genetic Algorithm
Manuel Cebrian, Manuel Alfonseca and Alfonso Ortega ... 277

Adapting an Evolutionary Algorithm with Embedded Simulation and Pseudo-Random Number Generation for the Cell Broadband Engine
Sofie Van Volsem and Sven Neiryck .. 282

BEHAVIOURAL MODELLING

Modeling Motorway Driving Behaviour using Microscopic Vehicle Trajectory Data
Abs Dumbuya and George Lunt ... 291

The Challenges of Accurate Mobility Prediction for Ultra Mobile Users
Jeeyoung Kim and Ahmed Helmy .. 297

Managing Spatial Self-Organization via Collective Behaviours
Rawan Ghnemat, Cyrille Bertelle and Gérard H.E. Duchamp .. 302

A Constriction Factor Based Particle Swarm Optimization for Economic Dispatch
Shi Yao Lim, Mohammad Montakhab and Hassan Nouri .. 305

Statistical Models for Pricing Weather Derivatives South African Coastal Areas
Mark W. Nasila and Igor N. Litvine ... 312

Modelling of Intervention Effect on Trust
Arnostka Netrvalova and Jiri Safarik .. 315

AGENT BASED SIMULATION

Experimental Study of Agent Population Models with a Specific Attention to the Discretization Biases
Pierre Chevaillier, Stéphane Bonneaud, Gireg Desmeules and Pascal Redou ... 323
CONTENTS

Actor and Observer Processes of Normative Agents in Social Simulations
Ulf Lotzmann and Michael Möhring ... 332

A Synchronization Protocol for Distributed Agent Based Simulations
with Constrained Optimism
Dirk Pawlaszczyk and Steffen Strassburger .. 337

WATER MANAGEMENT SYSTEMS

Some Algorithms supporting the Computer Aided Management of
Communal Water Nets
Jan Studzinski .. 345

Modeling and Simulation for predicting Water-Flower Based on RBF Neural
Network
Zaiwen Liu, Xiaoyi Wang and Jiping Xu .. 350

Simulation Tools for the Choice of Water Treatment Technology
Marek M. Sozański and Andrzej Urbaniaik .. 356

FLUID FLOW SIMULATION

Modelling and Simulation of the CANDU 6 Feedwater System Behaviour
Ilie Prisecaru, Daniel Dupleac and Nital Iulian Pavel 361

Parallel State and Noise Estimation of a Nonlinear CSTR Based on a Novel
Adaptive Extended Kalman Filter
Lotfollah Jargani, Mehdi Shahbazian, Karim Salahshoor and
Vahid Fathabadi ... 366

Simulation of the ‘GP’ MTD Device intended for the Extraction of Blood
Clots by using the Bond Graph Technique
I. Higuera, G. Romero; J. Félez and M.L. Martinez 372

PLUME SIMULATION

Bayesian Tracking of the Toxic Plume Spreading in the early Stage of
Radiation Accident
Petr Pecha, Radek Hofman and Václav Šmidl .. 381

Coupled Atmosphere Wildfire Model for Piloted Flight Simulation of Aerial
Fire Fighting Operations
Luca Cistriani, Sebastiano Bonfiglio and Nicola Stella 388
PARALLELISM OF CONTROL PROCESS OF ELECTRIC ENERGY CONSUMPTION IN A DISTRIBUTED POWER GRID SYSTEM

Dariusz Bober and Henryk Kapron
Faculty of Electrical Engineering and Computer Science
Lublin University of Technology
Nadbystrzycka 36, 20-618 Lublin,
Poland
E-mail: {d.bober, h.kapron}@pollub.pl

KEYWORDS
Power modes model, DMS, smart grids.

ABSTRACT

The abilities of simulation applications give the powerful tools for the scientists and engineers. It is obvious that before implementation of some idea you ought to test it in simulation environment. In the article authors present the idea of new model of electrical energy consumer powering – the power modes model. The model is implemented in Matlab® environment and it has been tested for the real parameters and data of one Polish power supplier of 2007 rear spectrum. The proposed methods of data metering and acquisitions allows for the parallelity of control process of electric energy consumption in a distributed environment of a power grid system, or a part of that system.

INTRODUCTION

In the most, a power grid system could be presented as a hierarchical structure (fig. 1). Where the node on the top is a supplier, which distribute the power to the lower level of hierarchy. The nodes of that level represent e.g. the departments of the supplier, the power stations an substations, the sub areas of the whole geographical area where the supplier distribute the energy. At the lowest level of the hierarchy are the energy consumers. More:

- one node of energy consumer could represent an internal hierarchy of energy distribution grid, with similar structure to fig. 1, where the main node represents the consumer and the sub nodes are his production objects and the electrical equipments on the lowest level.
- and on the other side the whole structure of the supplier (fig. 1) could be an subsystem of the global power system, and then the main node of the hierarchy (fig. 1) become an node on the lowest level of the global hierarchy – the transparency of mark line-node functionality.

It is important that on each node of each level of the hierarchy the true is (Gladys and Malta 1999):

\[p^S_{\text{level 0}} = f(x, \Sigma p^D_{\text{level -1}}) \] \hspace{1cm} (1)

The power supply \(p^S \) ability (1) of a node on level 0 is a function \(f \) of sub nodes power demand summary and is also determinate by a technical condition \(x \) of power grid infrastructure. On the other hand the power demand \(p^D \) of one node of level -1 depends of the power supply of its supplier and its neighbours – the others nodes of the level -1. So the main node is interest to order/generate such enough power such his sub nodes demand. On the other side the sub nodes of the node couldn’t demand more power that the node is able to supply. In this situation it is necessary to introduce some power supply limitation. The sub nodes ought to calculate the risk of the lack of electricity situations.

![Figure 1: The hierarchical structure of electric energy distribution process – power system. The marked line-nodes presents the transparency of node functions – a node of the lowest lever - a consumer - becomes the supplier in its internal distribution grid.](image)

The cost of lack of electricity (Gabrysiak 2004; Paska 2005) and the newest blackouts history (Malko 2006) necessitate the need for change and a new better solutions developing. The power modes model - presented in the next chapter – is helpful for the solution researching.

REMODELING OF THE ELECTRIC ENERGY CONSUMPTION STRUCTURE

The researches (Bober 2008a) of the households’ consumers’ preferences and decisions of energy consumption limitation in the situations of power deficit allows for introduce new model of electricity consumer powering “the power modes model” (Bober 2008b), where “a part” of consumed energy \(E \) is associated with a quality parameter \(q \):

\[TR = g(E, q) \] \hspace{1cm} (2)
The quality parameter q describes some individual principles of each power mode TR and the conditions (eq. energy price, hours of access, degree of reliability, etc.) of energy consumption by the stuff powered in the power mode. So, the described households could be powered by three power modes: protected power mode TRp, standard power mode TRs and economical power mode TRE. The energy consumed by the households in the new model (2) will be the sum of the modes:

\[E = E_{TRp} + E_{TRs} + E_{TRE} \]

(3)

The model of power modes significantly simplifies the process of energy consumption control. There is no necessity to detail control of each node of each level of the power system grid (see, fig. 1). Each node of the grid could process the control itself and the same it could manages the energy consumption structure in this part of hierarchy where it is the main node. The idea of distributed control of energy consumption structure in a hierarchy of a power grid system is presented at fig. 2.

![Figures 2: The structure of a power system hierarchy with the power modes model implementation (Bober 2008c).](image)

Although the presented idea looks promising, but there is a lot of conditions to be fulfilled before the power modes model will be introduced into practice. Some aspects of the solution implementation were described in (Bober and Kapron 2009). In this paper, we concentrate on simulations of possibilities of the power modes model in the implemented in the Matlab environment.

SIMULATIONS OF THE POWER MODES MODEL POSSIBILITIES

We have implemented one of the polish electricity distributor structures (see, fig. 3). The distributor (with code name SD2) has divided his administrative area into seven divisions’ sub-areas, with symbolic name ZEs. He distributes energy to many types of consumers, but we divide them into two groups: households, which buy the energy in tariff “G” and the other which do not belongs to tariff “G”. For group of consumers who ∈G we have linked the standard power mode TRs.

![Figures 3: The structure of controlled object (Bober 2008a).](image)

For this structure of the controlled object we have received the real data of day-hour power demand of 2007 year from the distributor. We decide that the distributor hypothetical day-hour power supply for this year will be his data of day-hour demand prognoses. The received data we have imputed into the Matlab® simulation environment as 24hours x 365days matrixes and we minus them to see the research area (see fig. 4). The problem to be resolved is the power demand decreasing to reduce the dark areas on deficit matrix.

![Figures 4: The power “deficit” matrix. The dark areas points the hours where the customers’ power demand overloads the distributor’s demand prognosis.](image)

We will research how the knowledge about the power modes’ structure of the households’ customers will help us to resolve the problem. We try to find out how the volume of power mode TRE of energy consumption returned to the power system will help us in the power “deficit” compensation? It is interest, because the “deficit” is generated by the whole distributors’ clients, not only by the households. If by the power modes model we control the energy consumption of households and in this way we significantly change the power demand of the whole distributors’ consumers – it will be a very good result. And as it is presented in the next subchapter this target has been achieved.

We define the indicators of the object state measurement:

- TR – id’s of ZE nodes where the TR model was implemented;
- \(\Sigma u \in G \) – numbers of households where the TR model is implemented;
- avPr – the average power demanded by households powered in the TR model;
- $E(Pr, T)$ – the total energy consumed by households powered in the TR model in the period of the whole year;
- q – numbers of situations where the supplied power do not balance the demand of the consumers, in this situation there is necessity to buy some more energy/power from the generators;
- $avPn$ – the average power “deficit”;
- $E(Pn, q)$ – the total energy “deficit”.

The initial object state is presented at fig. 5.

![Initial state of the object](image)

Figures 5: The state of the object before power modes model implementing, the whole nodes/consumers consume the energy without restrictions. The picks of the graph corresponds with dark areas of fig. 4.

In the consequence of series simulations of the power modes control of the object hierarchy (see, fig 5) we received the state of the object as is presented at fig. 6.

![Simulation results](image)

Figures 8: The final state of the object.

As you can see, the indicator $E(Pn, q)$ of the whole year energy consumed over the prognosis demand decreases from 32.06 GWh at the state before any control simulation (see, fig. 7), to less than 1 GWh after the restriction of TRe mode simulated on selected division-nodes. The other state indicators also look better.

The details of the experiment are described in (Bober 2008a).

CONCLUSIONS

There is common interest of the power systems improvement (Billewicz 2007, Kapron 2007, Malko 2009, Sroczan 2007) especially in the aspects of the system reliability and electricity sufficiency. The presented results of simulation of the power modes model implementation in the condition of real distributor shows that the model is helpful for the electric energy control. By distribution of decision-making process of control into dispersed “smart” nodes, the process of control could be parallelized into numerous independent processes. In consequence, that will increase the object control process performance.

REFERENCES

Bober D. 2008b. “The electric energy customer powering by power modes”. In Energy Market, No 1 (Feb), 27-32.

Bober D. and H. Kapron. 2009. “Distributed system for data acquisition and management of electric energy consumption”. In IEEE International Workshop on IDAACS’ 2009 Rende (Coseza), Italy, in pending.

Kapron H. 2007.”’Energy market, producers’ competition”. In Energy Market, No 6 (Jun), 13-16.

Sroczan E. 2007. “Application of IT system to optimize the cost of the electricity supply”. In Energy Market, no 1 (Feb), 18-22.

BIOGRAPHY

HENRYK KAPRON Professor at the Lublin University of Technology, Faculty of Electrical Engineering and Computer Science. Chief of Power Generation and Economy Department. From 1995, prof. Kapron has been come to the CHP Lublin-Wrotkow Ltd. as a member of control exploitation team. He is also Editor-in Chief of Energy Market Journal.

DARIUSZ BOBER assistant at the Lublin University of Technology, Faculty of Electrical Engineering and Computer Science. Computer network administrator at Lubella. He specializes in the databases, the web services and the XML technology. He is also interested in the power economy and the systems of control.