The International Multi-Conference on Complexity, Informatics and Cybernetics
April 6th - 9th, 2010 – Orlando, Florida, USA

PROCEEDINGS
Volume II

Edited by:
Nagib Callaos
Hsing-Wei Chu
Wanpen Krittaphol
William Lesso
Michael J. Savoie

Organized by
International Institute of Informatics and Systemics
Member of the International Federation for Systems Research (IFSR)
Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy for private use. Instructors are permitted to photocopy, for private use, isolated articles for non-commercial classroom use without fee. For other copies, reprint, or republication permission, write to IIIS Copyright Manager, 13750 West Colonial Dr Suite 350 – 408, Winter Garden, Florida 34787, U.S.A. All rights reserved. Copyright 2010. © by the International Institute of Informatics and Systemics.

The papers of this book comprise the proceedings of the conference mentioned on the title and the cover page. They reflect the authors' opinions and, with the purpose of timely disseminations, are published as presented and without change. Their inclusion in these proceedings does no necessarily constitute endorsement by the editors.

PROGRAM COMMITTEE

Chair: C. Dale Zinn (USA) and José Ferrer (Venezuela)

Acharya, Sushil
Afandizadeh Z., Shahriar
Akashi, Takuya
Alam, Hassan
Alameh, Kamal
Anwar, Faisal
Arikan, Emin
Balasubramanian, Karuppanan
Barkaoui, Kamel
Bradbury, Kyle J.
Castaño, Bonifacio
Chae, Hui Soo
Chang, Wen-Kui
Chopra, Deepak
Chung, Jen-Yao
Das, Asesh
Doran, Michael V.
Eshragh, Sepideh
Espinosa R., Alfredo
Eunni, Madhuri
Faghri, Ardeshir
Fan, Joshua Poh-Onn
Fang, Chun-Hsiung
Flores, Juan
Fukumi, Minoru
Gebre, Biruk A.
Geyer-Schulz, Andreas
Goel, Gaurav
Guo, Liwen
Gupta, Neha
Hartono, Rachmat
Hasnouli, Salem
Holmberg, David
Hu, Kai-Wei
Iyyunni, Chakradhar
Jeng, John
Katsuyama, Tomoo
Kulkarni, Arun
Kumar, Aman
Lalooses, Francine
Lee, Earl Rusty
Lee, Fang-Yic
Robert Morris University
Iran University of Science and Technology
Yamaguchi University
BCL Technologies
Edith Cowan University
Columbia University
Montclair State University
Lefke Avrupa Universitesi
Conservatoire National des Arts et Métiers
Tufts University
Universidad de Alcalá
Teachers College Columbia University
Tunghai University
Netaji Subhas Institute of Technology
IBM
Pennsylvania College of Technology
University of South Alabama
University of Delaware
Electrical Research Institute
University of Kansas
University of Delaware
University of Wollongong
National Kaohsiung University of Applied Sciences
Universidad Michoacana
University of Tokushima
Stevens Institute of Technology
Universität Karlsruhe
Netaji Subhas Institute of Technology
Stevens Institute of Technology
Maharaja Agrasen Institute of Technology
BCL Technologies
École Nationale d’Ingénieurs de Tunis
National Institute of Standards and Technology
Tunghai University
University of Houston
Monclair State University
Numazu National College of Technology
University of Texas
BCL Technologies
The MITRE Corporation
University of Delaware
Tunghai University
USA
Iran
Japan
USA
Australia
USA
USA
Turkey
France
USA
Spain
USA
Taiwan
India
USA
USA
USA
Australia
Taiwan
Mexico
Japan
USA
Germany
India
USA
Tunisia
USA
Taiwan
USA
USA
USA
USA
USA
Taiwan
Licato, John C. University of South Alabama USA
Lin, Hong University of Houston-Downtown USA
Liu, Jun University of Ulster UK
López Zafra, Juan M. Universidad Complutense de Madrid Spain
Low, Kin Huat Nanyang Technological University Singapore
Maggiore, Giulio Telecom Italia Mobile Italy
Makaruk, Aleksander Vienna University of Technology Austria
Mitrovic, Franc University of Split Croatia
Moosavian, Ali A. K. N. Toosi University of Technology Iran
Mori, Kinji Tokyo Institute of Technology Japan
Munitic, Ante University of Split Croatia
Muñoz, Humberto Southern University and A&M College USA
Mura, Gianluca Politecnico di Milano University Italy
Nagaoaka, Tomoyuki Hoshino Resort Ltd. Japan
Natriello, Gary Teachers College Columbia University USA
Oya, Hidetoshi Shonan Institute of Technology Japan
Ozkul, Tarik American University of Sharjah UAE
Passos, Nelson Midwestern State University USA
Patel, Nisht Stevens Institute of Technology USA
Pochiraju, Kishore Stevens Institute of Technology USA
Podaru, Vasile Military Technical Academy Romania
Potente, Till RWTH Aachen University Germany
Praus, Petr Charles University Czech Republic
Rahman, Fuaad BCL Technologies USA
Repa, Václav University of Economics in Prague Czech Republic
Savva, Andreas University of Nicosia Cyprus
Seyed-Abbasi, Behrooz University of North Florida USA
Silva Flores, Brisa M. Electrical Research Institute Mexico
Singh, Madhusudan Netaji Subhas Institute of Technology India
Smith III, Charles V. University of South Alabama USA
Srivastava, Smriti Netaji Subhas Institute of Technology India
Sule, Bohumil Czech Technical University in Prague Czech Republic
Suomi, Reima Turku School of Economics and Business Administration Finland
Tanaka, Kanya Yamaguchi University Japan
Tanikova, Yuliya BCL Technologies USA
Thomas Jr., Thomas G. University of South Alabama USA
Trensen, Sonja University of Maribor Slovenia
Ucan, Osman N. Istanbul University Turkey
Visram, Zabin University of Warwick UK
Vrána, Stanislav Czech Technical University in Prague Czech Republic
Yao, Wenbing Brunel University UK
Yazawa, Toru Tokyo Metropolitan University Japan
Zolotová, Iveta University of Technology in Kosice Slovakia
Foreword

Our purpose in The International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2010) is to provide, in these increasingly related areas, a multidisciplinary forum, to foster interdisciplinary communication among the participants, and to support the sharing process of diverse perspectives of the same transdisciplinary concepts and principles.

Complexity, Cybernetics and Informatics are being increasingly related to each other in almost every scientific discipline, engineering area, and human activity. Their common transdisciplinarity characterizes and communicates them, generating strong relations among them and with other disciplines. They work together to create a whole new way of thinking and practice. This phenomenon persuaded the Organizing Committee to structure IMCIC 2010 as a multi-conference where participants may focus on one area, or on one discipline, while allowing them the possibility of attending conferences from other areas or disciplines. This systemic approach stimulates cross-fertilization among different disciplines, inspiring scholars, originating new hypothesis, supporting production of innovations and generating analogies; which is, after all, one of the very basic principles of the systems’ movement and a fundamental aim in cybernetics.

IMCIC 2010 was organized and sponsored by the International Institute of Informatics and Systems (IIIS), member of the International Federation for Systems Research (IFSR). IIIS is an organization dedicated to contribute to the development of the Systems Approach, Cybernetics, and Informatics potential, using both: knowledge and experience, thinking and action, for the:

a) identification of synergetic relationships among Systemics, Cybernetics and Informatics, and between them and society;

b) promotion of contacts among the different academic areas, through the transdisciplinarity of the systems approach;

c) identification and implementation of communication channels among the different professions;

d) supply of communication links between the academic and professional worlds, as well as between them and the business world, both public and private, political and cultural;

e) stimulus for the creation of integrative arrangements at different levels of society, as well as at the family and personal levels;

f) promotion of transdisciplinary research, both on theoretical issues and on applications to concrete problems.

On behalf of the Organizing Committee, I extend our heartfelt thanks to:
1. the 437 members of the Program Committees (86 members of the IMCIC 2010's PC and 351 members of the PCs related to the symposia organized in the context of IMCIC 2010) from 55 countries;
2. the 570 additional reviewers, from 114 countries, for their double-blind peer reviews;
3. the 603 reviewers, from 67 countries, for their efforts in making the non-blind peer reviews. (Some reviewers supported both: non-blind and double-blind reviewing for different submissions)

A total of 2286 reviews made by 1661 reviewers (who made at least one review) contributed to the quality achieved in IMCIC 2010. This means an average of 5.37 reviews per submission (426 submissions were received). Each registered author had access, via the conference web site, to the reviews that recommended the acceptance of their respective submissions. Each registered author could get information about: 1) the average of the reviewers evaluations according to 8 criteria, and the average of a global evaluation of his/her submission; and 2) the comments and the constructive feedback made by the reviewers, who recommended the acceptance of his/her submission, so the author would be able to improve the final version of the paper.

In the organizational process of IMCIC 2010, about 426 papers/abstracts were submitted. These pre-conference proceedings include about 157 papers, from 41 countries, that were accepted for presentation. I extend our thanks to the invited sessions' organizers for collecting, reviewing, and selecting the papers that will be presented in their respective sessions. The submissions were reviewed as carefully as time permitted; it is expected that most of them will appear in a more polished and complete form in scientific journals.

This information about IMCIC 2010 is summarized in the following table, along with the other collocated conferences:

<table>
<thead>
<tr>
<th>Conference</th>
<th># of submissions received</th>
<th># of reviewers that made at least one review</th>
<th># of reviews made</th>
<th>Average of reviews per reviewer</th>
<th>Average of reviews per submission</th>
<th># of papers included in the proceedings</th>
<th>% of submissions included in the proceedings</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMCIC 2010</td>
<td>426</td>
<td>1161</td>
<td>2286</td>
<td>1.97</td>
<td>5.37</td>
<td>157</td>
<td>36.85%</td>
</tr>
<tr>
<td>ICEME 2010</td>
<td>236</td>
<td>494</td>
<td>1139</td>
<td>2.31</td>
<td>4.83</td>
<td>42</td>
<td>17.80%</td>
</tr>
<tr>
<td>ICSIT 2010</td>
<td>225</td>
<td>507</td>
<td>1395</td>
<td>2.75</td>
<td>6.20</td>
<td>85</td>
<td>37.78%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>887</td>
<td>2162</td>
<td>4820</td>
<td>2.23</td>
<td>5.43</td>
<td>284</td>
<td>32.02%</td>
</tr>
</tbody>
</table>

We also extend our gratitude to the co-editors of these proceedings, for the hard work, energy and eagerness they displayed in their respective activities. We express our intense gratitude to Professor William Lesso for his wise and opportune tutoring, for his eternal energy, integrity, and continuous support and advice, as the Program Committee Chair of past conferences, organized by the International Institute of Informatics and Systemics, and as Honorary President of IMCIC 2010, as well as for being a very caring old friend and intellectual father to many of us. We also extend our gratitude to Professor Belkis Sánchez, who brilliantly managed the organizing process.
Special thanks to Dr. C. Dale Zinn and Professor José Ferrer for co-chairing IMCIC 2010 Program Committee, to Professors Jorge Baralt, Hsing-Wei Chu, and Michael J. Savoie for their General Co-chairmanship, and to Professor Belkis Sánchez for Chairing its Organizing Committee. We also wish to thank all the authors for the quality of their papers, and to the 1161 reviewers for the great job they did making the 2286 reviews that supported the acceptance process.

We also extend our gratitude to María Sánchez, Juan Manuel Pineda, Juan Pinto, Leonisol Callaos, Dalia Sánchez, Keyla Guedez, Nidimar Díaz, Yosmelm Marquez, Gabriel Briceño, Riad Callaos, Marcela Briceño, and Sean and Louis Barnes for their knowledgeable effort in supporting the organizational process and for producing the hard copy and CD versions of the proceedings.

Professor Nagib C. Callaos
IMCIC 2010 General Co-Chair
VOLUME II

CONTENTS

Contents

Informations Systems and Education - Invited Session
Organizer: Wanpen Krittaphol and Suchitra Mankarothai (Thailand)

Attavorarat, Chutima; Preechawai, Runghithwa (Thailand); "Information Technology for Management Property of Chulalongkorn University"

Chaengtham, Angsana; Akrajindanon, Prapaporn; Potsit, Amonrat (Thailand); "Audit Information System in Sap Application: Case Study of Chulalongkorn University"

Chutigarnpanich, Areerat; Saah, Waesmae (Thailand); "E-Filing Cabinet: Case Study for the Virtual and Green Office"

Krittaphol, Wanpen; Lapvorakitchai, Chariya (Thailand); "Sustainable Corporate Governance in the Internal Audit Office of Chulalongkorn University"

Mangkarothai, Suchitra; Tosupsin, Doungdow (Thailand); "Risk Assessment and Control in Research Management: Case Study of Chulalongkorn University"

Communication Systems

Aburas, Akram *; Gardiner, J. G. *; Al Hokail, Zeyad ** (* UK, ** Saudi Arabia); "Call Quality Measurement for Telecommunication Network and Proposition of Tariff Rates"

Gopalan, Kaliappan; Chu, Tao (USA); "Speech Recognition for Keyword Spotting Using a Set of Modulation Based Features – Preliminary Results"

Li, Huanlin; Huang, Weizheng; Dill, Jeffrey C. (USA); "A New Approach to Enumerating the Smallest Stopping Sets in LDPC Codes"

Li, Huanlin; Huang, Weizheng; Dill, Jeffrey C. (USA); "Construction of Irregular LDPC Codes with Low Error Floors"

Nielen, Alexander; Jeske, Tim; Schlick, Christopher M.; Arning, Katrin; Ziefele, Martina (Germany); "Interdisciplinary Assessment of Process Modeling Languages Applicable for Small to Medium-Sized Enterprises"
Communications Systems, Technologies and Applications

Barbosa, Tiago C.; Moreno, Robson L.; Pimenta, Tales C.; Ferreira, Luis H. C. (Brazil): "FPGA Implementation of a Reed-Solomon CODEC for OTN G.709 Standard with Reduced Decoder Area"

Danisova, Nina; Velisek, Karol; Horvath, Stefan (Slovakia): "Intelligent Camera System at the Workplace of Intelligent Assembly-Manufacturing Cell"

Huang, Weizheng; Li, Huanlin; Dill, Jeffrey (USA): "Digital Fountain Codes System Model and Performance over AWGN and Rayleigh Fading Channels"

Manikas, Theodore W.; Spence, Laura L.; Krier, Paul D.; Thornton, Mitchell A.; Nair, Sukumaran; Szygenda, Stephen A. (USA): "An Axiomatic Analysis Approach for Large-Scale Disaster-Tolerant Systems Modeling"

Zhang, Jinge; Huynh, Allan; Ye, Qinzong; Gong, Shaofang (Sweden): "Remote Sensing System for Cultural Buildings Utilizing ZigBee Technology"

Zhang, Wei; Guo, Xiangying; Wang, Qian; Liu, Cuicui (China): "Nonlinear Oscillation of a Angle-Ply Composite Laminated thin Plate with 1:2 Resonance"

Computing Technologies

Cherinka, R.; Miller, R.; Prezamela, J.; Smith, C. (USA): "Reshaping the Enterprise with Web 2.0 Capabilities: Challenges with Main-Stream Adoption across the Department of Defense"

Levy, Richard (USA): "Cloud-Based Information Systems Management Rising to the Challenge of Truly Distributed Computing"

Liang, Tao; Li, Qiqiang; Ding, Ran (China): "A Self-Organizing Approach to Reactive Scheduling of Multiproduct Batch Plants"

Troubitsyna, Elena A. (Finland): "Formal Development of Fault Tolerant Parallel Systems"

Yin, Zhishuai; Lin, Yingzi; Kamarthi, Sagar; Mourant, Ronald R. (USA): "Interactions between Intelligent Autonomous Vehicles and Human Controlled Vehicles in 3D Simulation"

Zlatareva, Neli P. (USA): "Context-Dependent Reasoning for the Semantic Web"

Control Systems, Technologies and Applications

Bober, Dariusz; Kapron, Henryk (Poland): "New Model of Electric Energy Consumption Control - Its Possibilities and Results of Simulation Research"
Braghin, Francesco; Cinquemani, Simone; Resta, Ferruccio (Italy): "A Linear Model of Magnetostrictive Actuators for Active Vibration Control"

Braghin, Francesco; Cinquemani, Simone; Resta, Ferruccio (Italy): "Modal Control of a Vibrating Plate Using Magnetostrictive Actuators"

Fernández V., Joaquín R.; Cortés, Pablo; Aparicio, Pablo (Spain): "Fuzzy Logic-Based Elevator Group Control System for Energy Optimization Purpose"

Hübner, Dirk H.; Ortwig, Harald H. (Germany): "Simulation Based Optimization of a Mechatronic Pressure Controller for CNG Powered Engines"

Kőczy, László T.; Ballagi, Áron (Hungary): "Multi-Robot Cooperation by Fuzzy Signature Sets"

Qamar, Khalid H. (Pakistan): "Clocked Simulation for Digital Control Systems"

Schuermann, Volker; Leidinger, Rafael; Wollert, Joerg F. (Germany): "Intelligent I/O-Terminals for Complex Communication Scenarios in Control Applications"

Zhang, Xiao-Dong; Wang, Yun-Xia; Li, Yao-Nan; Zhang, Jin-Jin; Zhang, Xiao-Dong (China): "An Approach for Pattern Recognition of EEG Applied in Prosthetic Hand Drive"

Human Interaction with Information Systems

Folley, Duncan; Wilkinson, Steve; Thomson, Simon (UK): "Rebooting the Student’s Attention Span by Using Personal Response Systems"

Lipkova, Jolana; Cechak, Jaroslav (Czech Republic): "Transmission of Information Using the Human Body"

Image, Speech and Signal Computing

Hernandez, Orlando; Apgar, Graham (USA): "High-Performance VLSI Architecture for the Microsoft® HD Photo Image Compression Algorithm"

Kopparapu, Sunil Kumar; Pandharipande, Meghna (India): "Clustering Speech Samples Based on Relative Distance Measure"

Lankaranry, Milad; Savoji, Mohammad Hassan (Iran): "A New Iterative Algorithm for ARMA Modelling of Vowels and Glottal Flow Estimation Based on Blind System Identification"

Oliveira da Silva, Alan Paulo; Guimarães Guerreiro, Ana Maria; Dória Neto, Adriano Duarte (Brazil): "FPGA Hardware Design, Simulation and Synthesis for a Independent Component Analysis Algorithm Using System-Level Design Software"

Rana, Saadia Afzal; Khan, Shoaib A.; Awa, Ali Afzal (Pakistan): "Advance Approach to Estimate Fingerprint Images Quality Using Statistical & Graphical Methodology"
Information Systems

Alqirem, Raed (Jordan): "A Viable System Model to Analyze an Organization's Metasystem" 214

Morozov, S.; Saiedian, H. (USA); "A Case for Distributed Recommender System Architecture" 220

Rousseaux, Sandrine (France): "Personal Carbon Card: Prospects and Challenges for ICT" 225

Shah, Saumil; Thiery, David; Zlatareva, Neli (USA): "Screening for Inconsistencies and Changes in Semantic Web Ontologies: Experiments with Protégé" 230

Zhang, Tiemei Irene; Wijayanayake, Janaka Indrajith (Australia): "A Framework for REST Service Registry" 236

Information Systems and Education

Andres, Hayward P.; Akan, Obasi H. (USA): "Assessing Team Learning during Technology-Mediated Collaboration" 242

Harris, William C. (USA): "Teaming Across the Computer Science Curriculum: Assembly Language, and Operating Systems" 247

Hongwaritorn, Nuttanont; Krairit, Donyaprueith (Thailand): "Effects of Program Visualization (Jeliot3) on Students' Performance and Attitudes towards Java Programming" 253

Internet/Intranet Technologies and Applications

Hsieh, Yung-Cheng (Yung); Chien, Ju-Chun (Joan); Cheng, Ssu-Yi (Cindy) (Taiwan): "The Development of Kin-Men National Park Digital Archive" 258

Pendergast, Mark O. (USA): "Evaluation of Application Level Communications Protocols for Networked Java Applications" 264

Rullis, Hermanis; Sloka, Biruta (Latvia): "Internet Banking Systems in Latvia: Challenges and Solutions" 270

Mobile/Wireless Systems, Technologies and Applications

Alghamdi, Fawzi A.; Kostanic, Ivica (USA): "Methodology for WiMAX Performance Optimization Using Drive Test Data" 276

Bae, Ihn-Han *; Olariu, Stephan ** (* South Korea, ** USA): "Design and Analytical Evaluation of a Fuzzy Proxy Cache Scheme for the Mobile Web" 282

Balamash, Salem; Kostanic, Ivica (USA): "Uplink Measurements Based Positioning of Mobiles in GSM Cellular Networks" 288
Choi, Seonho *; Eom, Hyeonsang ** (* USA, ** South Korea): "Securing Wireless Sensor Networks against Broadcast Service Attacks" 293

Etmaniz Marañón, Josu; Aranguren Aramendia, Gerardo (Spain): "Delay Time Analysis in Bluetooth 2.0 Wireless Networks" 299

Pennington, Richard; Pursell, David; Sloop, Joseph (USA): "Engaging Science Students with Wireless Technology and Applications by Re-Visiting the Thayer Method of Teaching and Learning" 303

Rukiew, Kusay; Kostanic, Ivica (USA): "Evaluation of Mobile WiMAX Deployment Strategies" 309

Process and Product Control

Chuan-Xin, Wang; Cheng, Shao; Yu, Han (China): "Compressor Anti-Surge Nonlinear Model Predictive Control Based on LS-SVM" 314

Duffy, Paul *; Woods, Gerry *; Walsh, James *; Kane, Michael ** (* Ireland, ** USA): "Online Real-Time Water Quality Monitoring and Control System" 318

Kim, Jin-Sung; Lee, Yeol; Kwon, O-Shin; Park, Sung-Man; Heo, Hoon (South Korea): "Design of Newly Robust PID Controller for Reverse Osmosis Plant" 324

Kwon, O-Shin; Kim, Jin-Sung; Park, Sung-Man; Heo, Hoon; Jung, Won-Hee (South Korea): "MIMO Controller with Compensator via Gain Tuning Method for Steam Temperature Control of Thermal Power Plant" 329

Lee, Yeol; Lee, Yong-Hee; Na, Sang-Gun; Kwon, O-Shin; Heo, Hoon (South Korea): "The Improvement of the PID Response Using Support Vector Regression" 335

Na, Sang-Gun; Kim, Jin-Sung; Park, Sung-Man; Lee, Yong-Hee; Heo, Hoon (South Korea): "Auto Tuning PID Controller Based on Improved GA for the Membrane of RO Process" 340

Vrana, Stanislav; Sule, Bohumil (Czech Republic): "Model-Free PID Controller Autotuning Algorithm Based on Frequency Response Analysis" 346

Communication and Network Systems Engineering

Siroky, Jaromir; Cempirek, Vaclav; Slivone, Miroslav (Czech Republic): "Number and Location Optimization of Freight Transport Centres" 352

Human, Group, and Organizational Information Systems

Fahey, Albert J.; Thorne, Barbara B.; Zeissler, Mitchell F. (USA): "Accommodating High-Volume Experimental Data from Scientific Equipment while Maintaining Security and Regulatory Compliance in a Moderate Size Diverse Collaborative Environment." 357

Fontaine, Louis; Selouani, Sid-Ahmed (Canada): "Intelligent Agents for Customer Behavior Prediction to Improve Relationship Marketing" 362
Mitrović, Franjo; Karamarko, Ana; Plazibat, Veljko (Croatia): "Risk Management Methods and Control as the Cost Cutting Function in Shipping Industry"

ICT-Based Electronic Data Processing: Computer Science and Engineering

Cretulescu, Radu G.; Mărieș, Daniel L.; Vintan, Lucian N.; Coman, Irina D. (* Romania, ** Italy): "An Adaptive Meta-Classifier for Text Documents"

Da Cunha, Márcio José; Caurin, Glaucio Augusto de Paula (Brazil): "A Proposal to Use KDD to Discover Alcohol and Sugar Production Plant Behavior"

Fröhlich, Antônio Augusto (Brazil): "Application-Specific Communication Systems for Clusters"

Gupta, Akhil; Ahmadi, Sharokh; Zaghloul, Mona (USA): "Low Voltage High-Q CMOS Active Inductor for RF Applications"

Sthalekar, Chirag; Ahmadi, Shahroksh; Zaghloul, Mona (USA): "An Accurate Mixed Signal Multiplication Technique for Application Specific Integrated Circuits"

Information Systems Engineering

Jakovljevic, Ljiljana; Pavlic, Mile; Asenbrener, Martina (Croatia): "Measuring the Size and Contribution of ERP Solutions through Covered Business Sectors"

Lin, Dong; Dong, Mingchui; Tou, Chipio (Bryan) (Macau): "Novel FDBC with Creative Technology for Integrating Advantages of Distributed and Centralized Systems"

Makagonov, Pavel; Reyes Espinoza, Celia B. (Mexico): "Auxiliary Methods for the Search of Text Documents in a Website"

Xie, Hao; Fang, Zhiyi; Mei, Xiaowei; Ding, Fang (China): "Analysis on SOA Service Components Based on FCA"

Information Systems Management

Latu, Savac (New Zealand): "Information Systems Analysis: What Should We Teach Our Students?"

Management Information Systems

Doong, Shing H. (Taiwan): "An Information Systems Impact Study Based on Task-Technology Fit Theory and Nonparametric Bootstrapping"

Slivone, Miroslav; Siroky, Jaromir; Cemperek, Vaclav (Czech Republic): "Transportation Cost Comparison between Single and Multiple Allocation in Hub-and-Spoke Networks"

Authors Index

367
372
378
383
389
393
397
403
409
414
419
425
431
437
NEW MODEL OF ELECTRIC ENERGY CONSUMPTION CONTROL - ITS POSSIBILITIES AND RESULTS OF SIMULATION RESEARCH

Dariusz BOBER
Institute of Computer Science, Lublin University of Technology
Lublin, 20-618, ul. Nadbystrzycka 36, Poland

and

Henryk KAPROŃ
Power Generation and Economy Department, Lublin University of Technology
Lublin, 20-618, ul. Nadbystrzycka 36, Poland

ABSTRACT

In the article authors present the idea of a new model of electrical energy consumer powering - the power modes model. The model is implemented in the Matlab® environment and has been tested for the real parameters and data of one Polish power supplier of 2007 year spectrum. The proposed methods of data metering and acquisition allow for the parallelity of control process of electric energy consumption in a distributed environment of a power grid system, or a part of that system. This article extends the model description and authors research details published in [12, 13].

Keywords: Power modes model, DMS, smart grids, distributed control, hierarchical control systems, smart metering and control.

1. INTRODUCTION

Basically, a power grid system could be presented as a hierarchical structure (fig. 1) where the node on the top is the supplier which distributes the power to the lower level of hierarchy. The nodes of that level represent e.g. the departments of the supplier, the power stations an substations, the subareas of the whole geographical area where the supplier distributes the energy. At the lowest level of the hierarchy are the energy consumers. Here is some more information:

- one node of energy consumer could represent an internal hierarchy of energy distribution grid, with similar structure to fig. 1, where the main node represents the consumer and the sub nodes are his production objects and the electrical equipment on the lowest level.

- and on the other side the whole structure of the supplier (fig. 1) could be a subsystem of the global power system, and then the main node of the hierarchy (fig. 1) becomes a node on the lowest level of the global hierarchy - the transparency of mark line-node functionality.

It is important that the following be true on each node of each level of the hierarchy [16]:

\[\text{P}^\text{S}(\text{level} i) = f(\text{x}, \Sigma \text{P}(\text{level} i - 1)) \]

(1)

The power supply \(P^S \) ability (1) of a node on level 0 is function \(f \) of sub nodes power demand summary and it is also determined by a technical condition \(x \) of power grid infrastructure. On the other hand, the power demand \(P^S \) of one node of level -1 depends on the power supply of its supplier and its neighbours - the other nodes of level -1. So the main node needs to order/generate such sufficient power as its sub nodes demand. On the other side the sub nodes of the node cannot demand more power that the node is able to supply. In this situation it is necessary to introduce some power supply limitation. The sub nodes ought to calculate the risk of the lack of electricity situations.

![Figure 1: The hierarchical structure of electric energy distribution process - power system. The marked line-nodes present the transparency of node functions - a node of the lowest level - a consumer - becomes the supplier in its internal distribution grid.](image)

The cost of lack of electricity [15, 29] and the newest blackouts history [18, 22] necessitate the need for change and to develop a new, better solutions. The power modes model - presented in the next chapter - is helpful for the solution researching.

2. REMODELLING OF THE ELECTRIC ENERGY CONSUMPTION STRUCTURE

Based on the research [4, 5] of the households consumers' preferences and decisions of energy consumption limitation in the situations of power deficit, it is advantageous to remodel the power consumption model.
The consumers are interested in taking active part in the power system balancing process. The consumers want to have a choice which of their electrical equipment they can turn off in a situation of power deficit and in the same way they will back the power to the system (by demand decreasing) and which ones are so important to their owners so they have to be powered, even for the electric energy cost increasing. The practice of rotating switching off all parts of the distribution grid [16, 23] does not give them a choice. For some period they are in a local blackout situation, with no electricity, no elevators, no air-conditioning, no water, and no communications [15]. The power modes model offers some solution.

Power modes model

The details of the power modes model are published in [5, 7], here the main idea of the model is presented. Let us imagine that there are technical and financial resources for implementation of a highly intelligent metering and control system of power consumption. The system provides online control of the all consumers electrical equipment and decides (of course after the consumers' parameterization) which equipment should be turned on and which should be turned off – the global intelligent grid of total control. Although it is imaginary, there is no necessity for control of each individual piece of electrical equipment, there is no necessity for such a detailed control. The research (3) shows that the consumers needs are divided into some typical groups: there is some electrical equipment which play very important functions for their owners and that functions are so critical that they decide to pay more for the electricity to keep them working, even in a situation of a power deficit. This fact was also observed by J. Paska "... in some times of a day consumers are ready to pay more for the reliability than in other ones" [29]. If encouraged economically, the consumers are ready to stop using some of their equipment functions for some time. There is a group of electrical equipment in each household which does not play very important functions for their owners (the consumers) and, if a power deficit situation occurs, they are ready to turn them off [3, 5]. The things being done by this equipment (e.g. washing, cleaning, garden irrigation, hot accumulating) will be finished when the deficit is gone. This group of equipment/functions dynamically changes during a day, but if we take large a sufficient group of households, there is some average index of those not important functions/equipment, about a half of the equipment items, which could be turned off at any time of a day (see fig. 2 a). The power consumed by this equipment is about 23% of a current households power demand (see fig. 2 b). Another way, if power deficit occurs, by turning off this group of unimportant stuff we are able to return into the power system up to 23% of the household power demand. The data acquired in the research [3] show that, apart from those two presented above groups of household electrical equipment, there is a third group. This group of the equipment represents this stuff which was evidenced by the consumers, but they do not specify the degree of relevance of this stuff’s functions. Their functions are not so critical that the consumers want to pay more for the electricity reliability, but not so unimportant to decide to turn them off if the power deficit occurs. This group of equipment plays some standard, not special, functions to their owners.

By the classification of the consumer equipment’s functions, we imagine that the total consumers’ power demand could be distributed into some parts, and we named them: the “protected” part of the consumed energy which is used by this group of equipment which plays critical functions for the consumers; the “standard” part of consumed energy used by this equipment which plays some standard functions; the “economical” part of consumed energy used by this equipment, which could be turned off any time during a day and finish their tasks another time. The structure of researched households’ electrical equipment’s functionality and the structure of households’ power demand gives some possibilities for energy consumption control (see fig. 2).

![Figure 2: The structure of the researched households' preferences; a) the electrical equipment volume structure; b) the power consumption structure; TRp – the most critical functions of the equipment for their owners; TRe – the least significant functions of the equipment; TRs – the remaining part of the equipment which do not belong to the previous two groups [5].](image)

This allows for introduction of a new model of electricity consumer powering "the power modes model" (Bober 2008a; Bober 2008c), where “a part” of consumed energy E is associated with a quality parameter q:

$$TR = g(E, q).$$

(2)

The quality parameter q described some individual principles of each power mode TR and the conditions (e.g. energy price, hours of access, degree of reliability, etc.) of energy consumption by the stuff powered in the power mode. So, the described households could be powered by three power modes: protected power mode TR_p, standard power mode TR_s and economical power mode TR_e. The energy consumed by the households in the new model (2) will be the sum of the modes:

$$E = E_{TRp} + E_{TRs} + E_{TRe}.$$

(3)
The model of power modes [7] is similar to another concept of the power consumption distribution - the "UPS model" [32], where the author also proposes to separate some individual power lines in the commercial buildings and to control them individually according to the energy price and energy sufficiency. The power modes model is a more universal model, designed for any type of the electricity consumers.

The control process simplifying and paralleling

The model of power modes significantly simplifies the process of energy consumption control. There is no necessity for detailed control of each node of each level of the power system grid (see, fig. 1). At each node there are some simple tasks to be processed, see diagram (fig. 3).

![Diagram](image)

Figure 3: The algorithm of electrical energy consumption control, with power modes model using; continuous lines represent internal tasks of a node; marked lines represent tasks realized out of a node (its parent or its children).

The repeatable tasks of each node of a power system grid hierarchy allows for the control process distribution. There is no necessity for central control of the whole structure of a power system. Each node of the grid could process the control itself and similarly it could manages the energy consumption structure in this part of hierarchy where it is the main node. The idea of distributed control of energy consumption structure in a hierarchy of a power grid system is presented in fig. 4. The total energy consumption (the radius of a circle presents a relative value) is managed by a node on each level of the hierarchy and the structure of power modes' indexes is aggregated down-up. The possible power demand limitation will be processed up-down and the chosen node will have knowledge “which of the slave nodes ought to turn off its economical power mode to reach the expected demand value”.

By implementation the same functionality of a "smart" node (see fig. 3) it is possible to distribute the decision-making process of the main node to dispersed sub-nodes, which could control some selected subareas. This way the process of energy consumption control will be divided into numerous independent processes of sub-area energy consumption control. The system theory [25, 26, 27] and the theory of control [19, 17] determine the rules of the control art where a complex problem ought to be decomposed into simpler tasks and as Moisiejew said “…there is no known complex system which does not have a hierarchical structure….” [28], so the proposed idea of the energy consumption control process is nothing visionary, but it is important to determine the main opportunities of the direction of our research.

The proposed model of hierarchical system of electric energy consumption control [5] is developed to serve this function.

![Diagram](image)

Figure 4: The structure of a power system hierarchy with the power modes model implementation [7].

The distribution of process control into dispersed sub-nodes has the following capabilities:

- the sub-processes of control could be executed independently, so the main process could be parallelized - many dispersed sub-nodes control their sub-areas in the same time;
- the volume of metering data is divided into numerous sub-areas, so a single data repository is smaller than if we centralize the whole control process into one database;
- there is a possibility to implement some virtual sub-areas, which have no geographical equivalents but we decide to do it to improve the control process. It is justified because of natural segmentation of
electric energy consumers [24], where such conditions as: their inhabitants, energy consumption volume, individual preferences, etc., specified them as an individual segment, but not closed geographically.

Although the presented idea looks promising, there are a lot of conditions to be fulfilled before the power modes model is put into practice. The papers [8, 11, 12] concentrate on some technical aspects of computer application modelling of the dedicated hierarchical control system. According to one of the authors "The system for measurement and control of electrical energy consumption" for the patent protection [6, 10] the state of the art of telemetry technology [1, 31] show that the problem of remote control of distributed objects is resolved. The problem is a large volume of the acquired data [23] and economical aspects of the technical infrastructure.

3. SIMULATIONS OF THE POWER MODES MODEL POSSIBILITIES

We concentrate on simulations of possibilities of the power modes model in the implemented Matlab environment. We believe that potential values of proposed method of electric energy control will change the readers' awareness and bring us a step closer to the solution implementation.

The object of control description

One of Polish electric energy distributor (with a code name SD2) has divided its administrative area into seven sub-areas, with a symbolic name ZEx (see fig. 5). It distributes energy to many types of consumers [30, 24] but we divide them into two groups: households, which buy the energy in tariff "G" and the other which do not belong to tariff "G". This division corresponds to other authors' research [3] which presents the information on the power modes structure of this group of electricity consumers (see fig. 2). To the group of consumers who ∈ G we have linked the standard power mode TRs.

For this structure of the controlled object we have received from the distributor the real data of day-hour power demand for 2007. We have decided that the distributor hypothetical day-hour power supply for this year will be his data of day-hour demand forecast. The received data have been input into the Matlab® simulation environment as 24hours x 365days matrices and subtracted to see the research area (see fig. 6). For the purpose of easier calculation of the hypothetical power "deficit" – the situations where the demand overload the forecasted figures – the distributor has to buy extra energy on the balance market [21, 33]. We have decided to narrow the research area to the upper part of the area – the white space in fig. 6 shows the situation where the demand forecast was correct or the forecast exceeded the demand (there is no necessity to buy extra energy).

Figure 6: The power "deficit" matrix. The dark areas point the hours where the customers' power demand overloads the distributor's demand forecast.

The problem and the solution

The problem to be resolved is the power demand decreasing to the dark areas on deficit matrix (see, fig. 6). We will research how the knowledge about the power modes' structure of the households' customers will help us to resolve the problem. We know that up to 23% of the households' power demand (see, fig. 2) may be reduced by turning off the devices powered in economical power mode TRe. We try to find out how this volume of energy consumption returned to the power system will help us in the power "deficit" compensation. It is interesting, because the "deficit" is generated by all distributors' clients, not only by the households. If by the power modes model the energy consumption of households can be controlled and in this way the power demand of the whole distributors' consumers can be changed – it will be a very good result. And, as it is presented in the next subchapter, this target has been achieved.

The solution, which we have implemented in the simulation environment, is to manage the power modes of each division-nodes of the distributor (see, fig. 5). If the power "deficit" occurs, we turn off the TRe mode of one of the ZEx nodes and if it does not help enough we can take another one. The decision-making problem which of the ZEx nodes choose for the turning off the TRe mode is another research issue, partly described in [2, 5]. Here we concentrate on the power modes model ability of the power deficit balancing.

We define the indicators of the object state measurement:
- TR – if’s of ZE nodes where the TR model was implemented;
- $\sum G$ – numbers of households where the TR model is implemented;
- avPr – the average power demanded by households powered in the TR model;
- E(Pr,T) – the total energy consumed by households powered in the TR model in the period of the whole year;
- q – numbers of situations where the supplied power do not balance the demand of the consumers, in this situation there is a necessity to buy some more energy/power from the generators;
- avPn – the average power “deficit”;
- $E(\text{Pn},q)$ – the total energy “deficit”.

The initial object state is presented in fig. 7.

![Figure 7: The state of the object before power modes model implementation, all the nodes/consumers consume the energy without restrictions. The picks of the graph corresponds with dark areas of fig. 6. [9].](image)

The results of the object control simulation

As a consequence of a series of simulations of the power modes control of the object hierarchy (see, fig. 5) we received the state of the object as presented in fig. 8.

![Figure 8: The final state of the object. [9].](image)

As you can see, the indicator $E(\text{Pn},q)$ of the whole year energy consumed over the forecast demand decreases from 32.06 GWh in the state before any control simulation (see, fig. 7), to less than 1 GWh after the restriction of TR mode simulated on selected division-nodes. The other state indicators also look better.

The selected indicators of the object state between the next steps of the simulation process were printed in the tab. 1.

<table>
<thead>
<tr>
<th>Steps of object control simulations</th>
<th>q</th>
<th>avPn</th>
<th>$E(\text{Pn},q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Controlled divisions</td>
<td>---</td>
<td>[MW]</td>
</tr>
<tr>
<td>0</td>
<td>None</td>
<td>4603</td>
<td>3.66</td>
</tr>
<tr>
<td>1</td>
<td>ZE1</td>
<td>1588</td>
<td>1.19</td>
</tr>
<tr>
<td>2</td>
<td>ZE1, ZE2</td>
<td>1124</td>
<td>0.68</td>
</tr>
<tr>
<td>3</td>
<td>ZE1, ZE2, ZE3</td>
<td>645</td>
<td>0.38</td>
</tr>
<tr>
<td>4</td>
<td>ZE1, ZE2, ZE3, ZE4</td>
<td>476</td>
<td>0.27</td>
</tr>
<tr>
<td>5</td>
<td>ZE1, ZE2, ZE3, ZE4, ZE5</td>
<td>321</td>
<td>0.18</td>
</tr>
<tr>
<td>6</td>
<td>ZE1, ZE2, ZE3, ZE4, ZE5, ZE6</td>
<td>255</td>
<td>0.14</td>
</tr>
<tr>
<td>7</td>
<td>ZE1, ZE2, ZE3, ZE4, ZE5, ZE6, ZE7</td>
<td>201</td>
<td>0.11</td>
</tr>
</tbody>
</table>

The details of the experiment are described in [9].

4. CONCLUSIONS

The results of the simulation of the power modes model implementation in the condition of real distributor presented here show that the model is helpful for the electric energy control. By distribution of the decision-making process of control into dispersed “smart” nodes, the process of control could be parallelized into numerous independent processes. In consequence, that will increase the object control process performance.

There is common interest of the power systems improvement [1, 4, 20, 23, 32, 33] especially in the aspects of the system reliability and electricity efficiency. The general position is that there is a need for a better power system infrastructure management. The view of “smart grids” or “intelligent grids” becomes more reliable [23], especially in fact of common availability of the teleinformation technology. The remote control of the dispersed objects is not a problem now. The issue is the model of the “actors’ participation in the electric energy consumption control process. At present, the platform for the electricity market partner’s cooperation is a price of energy [14, 18, 21], but the customers do not change their power demand if they do not receive the message about price changes online. The message must be clear, universal and easy to apply in the control automation infrastructure. Although, in fact of some technological “backwardness” of a large group of electricity customers, the message ought to be applicable without automation infrastructure, but simply by turning off/on of some customers’ electrical equipment by the customers themselves, after e.g. radio or TV messages. The proposed power modes model is accurate to resolve this issue.

5. ACKNOWLEDGMENTS

We are thankful to the Local Power Distributor Head Office for the sharing the data of power demand and supply.
6. REFERENCES

BIOGRAPHY

HENRYK KAPRON Professor at Lublin University of Technology, Faculty of Electrical Engineering and Computer Science, Head of Power Generation and Economy Department. Since 1995, Prof. Kapron has been cooperating with the CHP Lublin-Wrotków Ltd, as a member of operating control team. He is also the Editor-in-Chief of the Energy Market Journal as well as the author of a book on energy conversion. Moreover, he is a member of the Association of Polish Electrical Engineers and Vice President of the Polish Group of International Association for Energy Economics

DARIUSZ BOBER was born in Krasniki, Poland. In 2000 he graduated in computer science engineering from Lublin University of Technology. After a few years of acquiring practical competence as an administrator of databases, in 2006 he took up a Ph.D. programme at his native University. In March 2009 he successfully defended his Ph.D. dissertation and was awarded a doctor's degree in Technical Science by the Board of the Faculty of Electrical Engineering and Computer Science. He specializes in the databases, the web services and the XML technology. He has 10 years of employment as IT administrator in on of polish pasta factory. His interests also include the power economy and the control systems.